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Figures 

Figure 1. EBSD pattern from germanium sample mapped onto a sphere. The pattern center is adjusted 

to give the highest total intensity between parallel bands that overlay the original pattern. 

Figure 2. Misorientation maps (in degrees) from the average orientation of the PC-calibrated HR-EBSD 

scan A) HR-EBSD scan with PC calibration. B) HR-EBSD scan without PC calibration. C) Standard OIM 

scan. 

Figure 3. Average of the absolute value of all strain components for Si and Ge HR-EBSD scans using 

simulated reference patterns with and without a pattern center correction. 

Figure 4. Inverse pole figure maps (left) and tetragonality map (right) from the HSLA 65 (top) and L80 

(bottom) samples. 

Figure 5. Recovery of simulated dislocation field via the standard 3-term or 5-term approaches, and the 

improved 9-term approach available from HREBSD 

Figure 6. IPF orientation map of MgCe, and dislocation maps of in-situ tests at increasing strain levels. 

Twin nucleation is apparent, and appears to correlate with dislocation activity 

Figure 7.  Demonstrating the capability of utilizing the stress equilibrium relations to recover the 4 non-

measurable components of the Nye dislocation tensor, . 



Figure 8. Relative activity of a-type and c+a-type dislocations in deformed MgCe 

Figure 9. Cross section of interaction volume in Al (axes are in nm, and the scale is the normalized 

density of electrons from a given point) 

Figure 10. Left: Schematic of electron beam (yellow) crossing a 60o grain boundary (the inclination is into 

the page, and hence is not shown); EBSD patterns from each grain are shown inset. Right: Relative 

intensity of each grain’s pattern on the phosphor screen in a rectangle straddling the boundary (x-y scale 

in nm). 

Figure 11. Model of electron interactions with a sample, and comparison of resultant pattern strength 

across a GB (red) with a simulated library curve (blue) in order to determine GB angle 

Figure 12. Screenshots from HROIM software (left) and pattern center calibration code (right) 

Figure 13. (Left) SEM image of nano-nickel used in conductive composite. (Right) Measured and 

predicted values of resistivity vs strain using percolation-tunneling model. 

  



1 Statement of the Problem Studied 
Orientation Imaging Microscopy (OIM) has been an essential tool in the analysis, design and 

development of crystalline materials since its introduction in the early 90’s by one of the PIs and 

collaborators. Its use has contributed to the development of new steels, aluminum alloys, high TC 

superconductors, electronic materials, lead-free solders, optical prisms, etc. and has found applications 

in many other material systems. However, the basic algorithms used in the OIM framework lead to 

limitations in resolution that restrict application in the rapidly expanding field of nano-materials.   

This project successfully sought to develop a suitable high resolution OIM (HROIM) and 

demonstrate both its viability and its effectiveness using a variety of test-beds.  HROIM is based on rapid 

analysis of Electron Back-Scatter Diffraction (EBSD) patterns. The desired additional functionality over 

OIM included: high angular resolution at large and small misorientations; nano-scale feature resolution; 

resolution of elastic lattice distortion; and phase separation for lattice transformations of small degree.  

The envisaged technical approach involved three main steps: 1) accurate determination of 

orientation and strain relating to a single EBSD pattern; 2) resolution of contributing patterns from an 

image comprising multiple crystal structures within the instrument probe volume; 3) deconvolution of 

the resultant multi-state information to provide accurate representation of spatial structure. 

Step 1) built upon work by Angus Wilkinson’s group at Oxford University, using cross-correlation of 

EBSD patterns to recover lattice orientation and disorientation with high angular resolution (0.0050). 

This refined angular precision also enables recovery of the full local elastic strain field tensor, to a 

precision of 10-4. Simulated patterns introduced by the BYU team provided several significant 

advantages in these measurements once the angular resolution of this method was improved. The 

resolution of coincident patterns (step 2) proceeded in parallel with the previous step, using convolution 

methods to match the different patterns, and determine their contribution to the image. Step 3) then 

proceeded, based upon deconvolution methods, to resolve the spatial information to higher accuracy.  

Finally, rapid algorithms, based upon Fast Fourier transforms were developed to approach the full 

automation in area scanning that has made OIM a powerful tool. These algorithms have been developed 

in conjunction with EDAX, under the scope of a commercialization agreement, in order to make the 

HROIM tools available to the general scientific community. 

The capabilities and functionality of HROIM has been evaluated against a test bed of various metal 

alloys. These include magnesium, nickel, tantalum, copper, and others. More details will be given below.  

2 Summary of the Most Important Results 
Key points of scientific progress include the following: 

1. A novel pattern center determination method (central to achieving high accuracy) has been 

extensively validated, coded, and applied to strain measurements with dramatic reduction in 

error 



2. The simulated pattern method was implemented to enable the extraction of ABSOLUTE 

orientation and strain measurements, not previously available 

3. Recovery of lattice tetragonality and pseudo-symmetry resolution has been demonstrated 

4. Higher accuracy dislocation density information has been extracted via HROIM, and correlations 

with twin nucleation have been observed 

5. Determination of the full Nye tensor from 2D information was demonstrated, and an improved 

algorithm for determining relative activity of slip systems was tested on simulated fields 

6. Improved spatial resolution has resulted from segregation of merged patterns and 3D grain 

boundary information has been recovered from 2D data 

7. Commercially-ready HROIM code has been shown to improve key OIM error measures by more 

than an order of magnitude 

8. Undergraduate research funded by this project has also developed piezo-resistive nano-

composites for strain measurement, and studied them using various novel techniques 

These points will be reviewed in more detail below. 

2.1 Accurate Determination of EBSD Pattern Center 
 The pattern center measurement determines the displacement between the point on the sample 

impacted by the electron beam, and the perpendicular point on the phosphor screen. In ordinary EBSD-

based methods, like Orientation Imaging Microscopy (OIM), this measurement is determined to within 

tens of microns using a periodic calibration. However, this accuracy is inadequate for HROIM. A more 

accurate measurement is required for absolute orientation and strain measurements. 

 The BYU team has developed (and applied for a patent for) a new approach to pattern center 

calibration that provides accurate measurements using a purely software approach (obviously, a much 

preferred approach to hardware solutions) [1]. The method exploits the fact that the Kikuchi bands 

formed by secondary electrons would have parallel edges if captured on a sphere rather than on the flat 

phosphor. If the correct pattern center were known, and the bands from the phosphor were mapped 

back onto a sphere, the bands would be parallel. 

 The method has been tested on various materials, including the EBSD pattern from a germanium 

sample, as shown in Fig. 1. In this example, two bands are chosen, and the approximate pattern center 

adjusted to obtain maximum intensity between planes that cut through parallel circles on the sphere, 

bounding these bands. The accuracy is better than 1/10th of a pixel (as measured on the phosphor), and 

hence satisfies the requirements of HROIM. The method will also be extremely useful for regular OIM. 



 

Figure 1. EBSD pattern from germanium sample mapped onto a sphere. The pattern center is adjusted to give the 

highest total intensity between parallel bands that overlay the original pattern. 

 

2.2 The Simulated Pattern Method 
Perhaps the most important advance achieved by the BYU team is the so-called “simulated 

pattern” augmentation of the Wilkinson cross-correlation method.  In 2006 Wilkinson reported using 

cross correlations between adjacent electron backscatter diffraction (EBSD) images as a means to 

recover components of the elastic strain and rotation tensors.  In this process the EBSD image is divided 

into multiple regions of interest (ROI).  ROIs from two images are then compared by image cross 

correlation, to find the small shifts of features from one image to the other.  In the Wilkinson method 

two experimental images are compared – the first from a ‘strain-free’ reference sample, and the second 

from the deformed sample.  Cross correlations can be performed if the lattice misorientation between 

these two samples is ~ 1o or less.  The small displacements between the corresponding ROIs of these 

two images are recorded, and from these estimates of the elastic displacement gradient tensor can be 

recovered.  Wilkinson’s method is capable of resolving lattice orientation to within ~ 0.005o and elastic 

strain to ~ 0.0001.  But the method is severely limited by the need for a strain-free reference pattern, of 

nearly the same lattice orientation as the second pattern. 

 The BYU team considered simulated EBSD patterns as a reference, to take the place of the strain-

free reference pattern.  Kinematic Bragg’s Law simulations were used to place the diffraction bands 

within the simulated image.  Intensities were assigned to these bands, uniformly, according to the 

square of the structure-factor.  The results were expressed by an angular resolution ~ 0.02o and strain 

resolution of ~ 0.0004, when the pattern center is located with ~ 1/10 pixel precision.  These results, 

while not quite as impressive as the Wilkinson recoveries, have much broader application because they 

are completely separated from the strain-free reference requirement.   



 These developments were described and published in a seminal article in Ultramicroscopy [2], 

and have been receiving considerable attention.  Perhaps the most important feedback on the method 

is the agreement developed between BYU and TSL/EDAX to commercialize the method.  The algorithms 

are currently protected via a full patent application in cooperation with TSL/EDAX. 

2.2.1 HREBSD Resolution 

The BYU team has worked with TSL to produce commercially-ready code, and has recently 

tested the performance of the code against standard OIM error metrics. Figure 2 demonstrates the clear 

superiority of the HREBSD code over regular OIM. Furthermore, when the newly developed pattern 

center algorithm is used to determine microscope geometry the improvement is dramatic. The 

orientation spread metric exhibits better than an order of magnitude error reduction [3, 4]. 

 

Figure 2. Misorientation maps (in degrees) from the average orientation of the PC-calibrated HR-EBSD scan A) HR-

EBSD scan with PC calibration. B) HR-EBSD scan without PC calibration. C) Standard OIM scan. 

 

2.2.2 Pattern center code validated and applied to strain measurements 

Using the HREBSD approach with the PC determination algorithm, accurate strain 

measurements are now possible (Fig. 3). Such measurements are only possible via the HREBSD tools 

(with simulated bands) developed under this program [1, 3]. 



 

Figure 3. Average of the absolute value of all strain components for Si and Ge HR-EBSD scans using simulated 

reference patterns with and without a pattern center correction. 

2.3 Recovery of Lattice Tetragonality and Pseudo-Symmetry Resolution 
 The simulated pattern method has been used to recover lattice tetragonality in high-strength low-

alloy steels.  Since the level of tetragonality can be small, it is difficult to distinguish between the 

tetragonal phases from the parent phase of higher symmetry.  This is known as the “pseudo-symmetry” 

problem.  Fe-C materials provide an ideal test-bed for the simulated pattern method.  The challenge is to 

detect the effects of carbon distribution as it relates to the presence of Bainite phase (with small 

tetragonality) interspersed among the cubic ferrite.  An example of the results is shown in Fig. 4, for two 

different HSLA steels processed by friction stirring.  The range of tetragonality lies in the range 0 – 0.06.  

The higher average tetragonality is found in the L80 steel, and the largest tetragonalities are found near 

grain boundaries, where carbon will preferentially segregate.  The view offered by these high resolution 

methods differs from what has been considered before: grains thought to be Bainite phase are actually, 

and typically, regions with varying tetragonality across a single grain. 
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Figure 4. Inverse pole figure maps (left) and tetragonality map (right) from the HSLA 65 (top) and L80 (bottom) 

samples. 

2.4 High accuracy dislocation density information extracted via HROIM 
By using the full elastic distortion information available via HREBSD, a significantly improved 

estimate of dislocation density can be obtained (Fig. 5) [5, 6]. Using HREBSD together with in-situ scans 

of Mg, the first indications of twin formation at GBs, with correlation to dislocation activity, were 

observed, and noted by Beyerlein et al. in a recent paper concerning twin mechanics [7] (Fig. 6) 



 

Figure 5. Recovery of simulated dislocation field via the standard 3-term or 5-term approaches, and the improved 

9-term approach available from HREBSD 

 

Figure 6. IPF orientation map of MgCe, and dislocation maps of in-situ tests at increasing strain levels. Twin 

nucleation is apparent, and appears to correlate with dislocation activity 

 

2.5 Determination of full Nye tensor and relative activity 
The stress equilibrium equations, implemented via a Green’s function approach, have been 

utilized to extract the full dislocation density tensor from only the measurable 2D fields, on simulated 

examples (Fig. 7; some of this work was covered by an NSF EAGER award) [8]. 



 

Figure 7.  Demonstrating the capability of utilizing the stress equilibrium relations to recover the 4 non-measurable 

components of the Nye dislocation tensor, . 

A new technique for recovering relative activity on the various available slip systems from a 

knowledge of the Nye tensor has been implemented on simulated dislocation fields, resulting in superior 

extraction of the components. Figure 8. demonstrates extraction of relative activity in Mg using a more 

traditional method. The new technique is currently being coded for application to real data. 

Figure 8. Relative activity of a-type and c+a-type dislocations in deformed MgCe 

2.6 Spatial Resolution and Grain Boundary Analysis 

 The limits in spatial resolution of OIM are determined by the size of the interaction volume of the 

electron beam with the sample. When multiple lattice orientations lie within the interaction volume a 

convoluted EBSD pattern is produced, relating to all crystal lattice states within the volume. In order to 

improve spatial resolution of HROIM data, an accurate determination of the interaction volume is 

required (including quantification of the number of electrons arriving at the phosphor screen from each 

segment of the volume). 

a-type dislocations
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 Monte Carlo modeling has been undertaken (using CASINO from the University of Sherbrooke), 

and an accurate map of the interaction volume obtained (Fig. 9). This has initially been used to 

deconvolve overlapping EBSD patterns at grain boundaries. Figure 10 shows the relative intensity of 

EBSD patterns from either side of a 60
o
 grain boundary as the electron beam passes the boundary, using 

this deconvolution method. Not only does this approach give us better spatial resolution from the original 

2-D data, but we can potentially extract 3-D information regarding grain boundary inclination from the 

HROIM data.  

 

Figure 9. Cross section of interaction volume in Al (axes are in nm, and the scale is the normalized density of 

electrons from a given point) 

 

 

Figure 10. Left: Schematic of electron beam (yellow) crossing a 60
o
 grain boundary (the inclination is into the page, 

and hence is not shown); EBSD patterns from each grain are shown inset. Right: Relative intensity of each grain’s 

pattern on the phosphor screen in a rectangle straddling the boundary (x-y scale in nm). 

 

  



An internally developed Monte Carlo simulation approach to modeling the interaction volume 

within a sample has now been adopted, and libraries of curves are being developed to determine grain 

boundary inclination. Initial validation against 3D data, and twin boundaries (with known inclinations) 

indicate that the framework will resolve GB inclination to reasonable accuracy (Fig. 11) [9, 10]. 

 

Figure 11. Model of electron interactions with a sample, and comparison of resultant pattern strength across a GB 

(red) with a simulated library curve (blue) in order to determine GB angle 

2.7 Commercial-ready HROIM Code 
Code has been developed in cooperation with TSL-EDAX that will provide the functionality of the 

HROIM framework to the scientific community. The screenshots in Fig. 12 illustrate the Matlab version 

of the code. The TSL version is even higher quality. 

     

Figure 12. Screenshots from HROIM software (left) and pattern center calibration code (right) 
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2.8 Conductive Nano-Composites 
 In order to train several promising new undergraduates in the tools required for this project, 

parallel work was conducted on conductive nano-composites. Using focused ion beam and SEM 

microscopy the structure of the composite has been investigated and a mathematical model of 

properties developed, based upon a percolation-tunneling approach (Fig. 13). A novel method of 

determining nano-scale electrical properties (using a nano-indenter) has been proposed, and a wide 

range sensor application has been developed in partnership with LANL. Three journal papers have been 

published by this team [11-13], and eight conference presentations have been made by the 

undergraduates (including four refereed papers). 

 

Figure 13. (Left) SEM image of nano-nickel used in conductive composite. (Right) Measured and predicted values of 

resistivity vs strain using percolation-tunneling model. 
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